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one expects this model to produce reasonab1e results 
for their shear elastic constants. The results obtained 
by Fuchs for the Coulomb contribution to the shear 
stiffnesses of body-centered cubic metals with one 
valence electron per atom are: 

C=C44 =Ke2/n l , C'=HCU -C12)=K'e2/n', (1) 

'where e is the electronic charge, n is the atomic volume 
and K and K' are constants. In addition, Fuchs 
presents a modification to the above results to take 
into account the difference of the electron charge 
density at the surfaces of an atomic polyhedron, from 
the value e/n which would obtain if the electron charge 
were distributed uniformly over the volume n of the 
cell. The modification to C and C' consists of adding a 
multiplicative factor Z2, where Z represents the ratio 
of the actual charge density at the cell boundary to the 
value e/n, yielding: 

c=Z2Ke2/nt , C'=Z2K'e2/n i . (2) 

If one represents the valence electronic wave function 
in the crystal by 

fo(r) = [flo (r)/ ntJ expik. r, 

where !lo(i') is the wave function of the lowest electronic 
state, normalized over the volume of the atomic poly
hedron, Z is given by: Z = l!lo(i' c) 12 where t c is the posi
tion vector of any point on the cell boundary. If one 
examines the wave function in the approximation that 
the atomic polyhedron has been replaced by a sphere 
of equal volume, as has been done by Wigner and 
Seitz and others, the expression for Z becomes 
Z= l!lo(r,) 12 where r. is the radius of the "S" sphere 
with volume n. That is, !7rf}=11 This yields for C and 
C' the results: 

Measurements of the elastic constants of the alkali 
metals lithium, 6 sodium,~l and potassium17 have been 
made over a range of temperatures. Results of these 
measurements are shown in reference (5), where the 
experimental values of C and C' are plotted as a4C/e2 
and a4C'/e2 versus temperature in order to compare 
them with the corresponding Fuchs theoretical result 
which is indicated on the T=OoK ordinate. a is the 
lattice parameter and is proportional to nl. Bender's 
measurements on potassium were made only at 78°K 
and are marked by triangles. It may be seen that the 
agreement at OOK is not perfect, but that it predicts the 
large anisotropy ratio C/C' which is observed in these 
materials. The results for the shear elastic constants 
are discussed in greater detail in reference (5). 

It is possible to extend the theoretical results for the 
shear constants of the alkali metals to obtain a predic
tion of their pressure (or better, volume) variation. 

17 O. Bender, Ann. Physik 34, 359 (1939). 

Using the unmodified equation (1), 

d InC/d lnn=d InC'/d Inn = - ~- . 

An experiment.ally determined value of each of d InC; 
d Inn and d InC'/d Inn can be found from the corre
sponding pressure derivatives, using the relation d InC/ 
d lnn= -BT(dG/dP) where G may be any quantity. 
This with values ofdC/dP and dC'/dP from Table II 
yields the results: d InC/d lnn= -2.4, d InC'/d Infl 
= -2.4, which are nearly a factor of two larger than 
the prediction. Possibly the most remarkable observa
tion to be made about these experimental results is the 
indication they give that the elastic anisotropy is 
essentially independent of the compression of the 
crystal (at 299°K at least). This observation rules out in 
the practical sense any interaction between neighboring 
ion cores of the crystal because the nearest neighbor ion core 
interactions in a low density bcc metal would be expected 
to increase C and decrease C' from their respective values 
without ion core interaction, with rapidly increasing effect 
as the pressure was applied, contrary to the observations. 
The indication is then that the electronic charge density 
at the boundary of the atomic polyhedron is changing 
with volume faster than l/n, or in other words, !lo(r.) 
as defined earlier is increased as n is decreased. Using 
the equations (3) together with d InC/ d Inn and 
d InC'jd Inn, we obtain the result: 

d InC I (d In!lo(r.)) 
-- =-t+4 =-2.4, (4) 
d Inn 0 =00 d Inn 0 -00 

where no is the equilibrium zero pressure atomic volume. 
Whence: 

(
d InJ.Lo(r.») 

d Inn 0=00 

=-0.27. (5) 

The work of various theoretical investigations1IHo 

indicates values of [d In!lo(r.)/d InnJo =00 at T=OoK 
which lie between -0.08 and -0.13. 

Interpretation of the pressure variation of the 
elastic constants of AluminumlO by Schmunk and 
Smith, required an assumption that the electrostatic 
contribution to the shear elastic constants varied as 
,-8 instead of r-4• 

Bulk Modulus 

We consider now the more difficult question of inter
pretation of the value of the bulk modulus and its 
variation with volume. Interpretation of the elastic 
constants appropriate to strains which involve a 
volume change is, in general, more difficult and more 
susceptible to error than interpreting shear elastic 
constants and their volume variation. Since some of the 

.contributions to the cohesive energy of the crystal may 

18 H. Brooks, Phys. Rev. 112,344 (1958); 91, 1028 (1953). 
18 E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933) 46, 1002 I 

(1934). 
20 J. Bardeen, J. Chern. Phys. 6,367 (1938). 
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